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COUPLED-OSCILLATOR NATURAL ORBITALS

. | Peter D. Robinson

: ‘ Examples of natural orbitals in closed form seem rare enough [ 1]
to justify this note, in which such orbitals are exhibited for coupled

oscillators.

B sl e

Let {Bn(a,x)} denote the complete set of orthonormal eigenfunctions

————— .

of the oscillator Hamiltonian

4 2

a X

2 |
d 2
= : 1) ;

dx
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Nln—-

h(a,x) = - >0, -0 <x<oo

b

|
‘ corresponding to the eigenvalues (n + El)ozz. Specifically ]

1

2
0 (a,x) = |2—| H_(ax) exp(- = o%%), n=0,1,2... , (2)
n 173 nn‘ n 2

2

where the Hermite polynomials Hn(ax) are orthogonalized with respect ]

2
to a weight factor [ 2] exp(-a xz). Consider now the identical coupled

oscillators described by the Hamiltonian

2 2
I d 1d 1 4, 2 2 1l 4 4 2
H:-Z 0 2+2a(x1+x2)—4(a —b)(xl-xz),
dx dx
1 2
a>b>0, -oo<xl<oo, -oo<x2<oo_ (3)
In terms of the coordinates
s X)), v, = e - x)
L R R S AR Tl s e TR (4)
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the Hamiltonian (3) takes the separable form

M= h(a,yl) + h(b,yz) : (5)

The ground-state wave-function thus has a space part

1
_ (ab)}? 1229 22
Vg, x,) = 05(3,7))8,(b,y,) = (Tl’ ) Rl gs Y - b,
é
ab ORI ST ke et
= (“ ) exp{- 4(a +b )(x1 +x2) - Z(a -b )xlxz} i)

which is the eigenfunction of the operator (5) corresponding to the eigenvalue

2@?+ b,
This function Lb(xl,xz) is symmetric in X and X, and is
normalized so that
0 o0
f_wf-w viaxax, = 1. (7)

Accordingly, d;(xl,x ) is the Hilbert-Schmidt-type kernel of a compact,

2
self-adjoint integral operator on the real Hilbert space L2(~°°,°°). Standard

integral equation theory [ 3] tells us that this operator has a complete

orthonormal set of eigenvectors {¢n} defined by

0

fooq»(xl,x2)¢n(x2)dx2 =\ ¢ (x)), n=0,1,2... , (8)

with the eigenvalues xn accumulating at zero. Further, the expansion

0

0
1 2
7 VX, %) = foo bix, s)(x,, s)ds = nz=:0 N o (X6 (X)) 9)
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is convergent for all X, and x_.

the natural orbitals for \p(xl,x )

The functions ¢n(x) are precisely

and (9) gives the expansion for the

first-order density matrix y(xl,xz). The "occupation numbers" kr?; must

sum to unity, from (7) and (9). The expansion for y(x,,x.) itself, namely

o0
~ A
Vix, %)~ ) WX (%), (10)
n=0
must also be convergent, at least in the L_ norm sense.
In the case of the function given in (6), the expansion (10) can be
found directly, and is convergent for all X and xz. Mehler's formula [ 2]
states that
2 o n
z R 2z 2.3 z
- + = - 2
exp{ Sl H - tltz} Sz 0 w0 wm ),
l1-2 l1-2z n=0 2 n!
MR iR <8, ket < w, (11)
. y e A 2
Setting tl = ax, t2 = axz and multiplying through by exp{- a (x1 + xz)j

we obtain from (2):

|2

=

2 g
exp{(l+ z )—(x2+ XZ) + 2% }: (1-22)2 Z 2" (@,x.)6 (a,x). (12)
2 i n n’2
m l‘z 1 n:O

Wi;h the choices

I} 5 __a-b
« = (4b}*, 2 = Y (13)

the left-hand side of (12) becomes xb(xl,xz) as given in (6). Thus




lJJ(xl’x b5 Z {a + b t=H (a + b) }e ('\/_ > )en(m’xz) !

so that for the ground-state of the coupled oscillators we have the

natural orbitals

[N

¢, (%) = en(@,X) = [ Nab ] H_(Nabx)exp(- 1 5 abx o

1
m22 n!

and corresponding eigenvalues

The orbitals (15), and the occupation numbers )‘rzx’ can also be obtained

1
by working from the expression for E y(xl,xz), which is

-1 4 4 2.2 2 .22

2
—;y(xl,xz) :ab[%(az+b2)] exp( - (a +b2 = 632 b )(xi2+x:) + '(9'—2'-b—)2—xlx2
8(@a +Db) 4(a +b")

Extension to three-dimensional oscillators, for which Davidson [ 1]

has discussed the first-order density matrix, is straightforward.
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